Nonlinear wave dynamics in honeycomb lattices
نویسندگان
چکیده
We study the nonlinear dynamics of wave packets in honeycomb lattices and show that, in quasi-onedimensional configurations, the waves propagating in the lattice can be separated into left-moving and right-moving waves, and any wave packet composed of only left (or only right) movers does not change its intensity structure in spite of the nonlinear evolution of its phase. We show that the propagation of a general wave packet can be described, within a good approximation, as a superposition of leftand right-moving self-similar (nonlinear) wave packets. Finally, we find that Klein tunneling is not suppressed by nonlinearity.
منابع مشابه
Nonlinear Waves in Honeycomb (graphene-like) Photonic Lattices
We study the dynamics of waves in honeycomb lattices. Wave dynamics in honeycomb lattices exhibits unique phenomena that cannot be observed in any other periodic system, such as conical diffraction [1] and Klein tunneling. The origin of these intriguing phenomena is the conical intersection between the two bands and the presence of two atoms in each unit cell. These two properties make it possi...
متن کاملDiscrete solitons and vortices in hexagonal and honeycomb lattices: existence, stability, and dynamics.
We consider a prototypical dynamical lattice model, namely, the discrete nonlinear Schrödinger equation on nonsquare lattice geometries. We present a systematic classification of the solutions that arise in principal six-lattice-site and three-lattice-site contours in the form of both discrete multipole solitons and discrete vortices. Additionally to identifying the possible states, we analytic...
متن کاملNonlinear localized modes in two-dimensional electrical lattices.
We report the observation of spontaneous localization of energy in two spatial dimensions in the context of nonlinear electrical lattices. Both stationary and moving self-localized modes were generated experimentally and theoretically in a family of two-dimensional square as well as honeycomb lattices composed of 6 × 6 elements. Specifically, we find regions in driver voltage and frequency wher...
متن کاملNonlinear Wave Packets in Deformed Honeycomb Lattices
The spectrum of a Schrödinger operator with a perfect honeycomb lattice potential has special points, called Dirac points where the lowest two branches of the spectrum touch. Deformations can result in the merging and disappearance of the Dirac points and the originally intersecting dispersion relation branches separate. Corresponding to these deformations, nonlinear envelope equations are deri...
متن کاملDynamical generation of two-dimensional matter-wave discrete solitons
We suggest a method to experimentally obtain two-dimensional matterwave discrete solitons with a self-repulsive BEC in optical lattices. At the edge of the Brillouin zone, a wave packet effective mass is negative which could be treated as inversion of the nonlinearity sign. Above critical nonlinearity this makes the wave packets collapse partially into localized modes with a chemical potential ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011